Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.172
Filtrar
1.
BMC Microbiol ; 24(1): 106, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561652

RESUMO

BACKGROUND: Acinetobacter baumannii (A. baumannii) is associated with both hospital-acquired infections (HAP) and community-acquired pneumonia (CAP). In this study, we present a novel CAP-associated A. baumannii (CAP-AB) strain causing severe pneumonia in an afore healthy male patient without underlying conditions. Subsequently, we investigated the pathogenicity and immunogenicity of this CAP-AB strain using a mice pneumonia model. RESULTS: A 58-year-old male patient with no underlying conditions experienced worsening symptoms of a productive cough, sputum, and fever that developed acutely, in just 24 h. The diagnosis was severe community-acquired pneumonia (CAP) and type-1 respiratory failure. An A. baumannii strain was isolated from his sputum and blood cultures. To gain a deeper understanding of the rapid progression of its pathology, we utilized the CAP-associated A. baumannii strain YC128, a previously obtained hospital-acquired pneumonia A. baumannii (HAP-AB) strain YC156, and a highly virulent A. baumannii control strain LAC-4 to construct a mouse pneumonia model, and subsequently compared the mortality rate of the three groups. Following inoculation with 107 CFU of A. baumannii, the mortality rate for the YC128, LAC-4, and YC156 groups was 60% (6/10), 30% (3/10), and 0%, respectively. The bacterial burden within the pulmonary, liver, and spleen tissues of mice in the YC128 group was significantly higher than that of the YC156 group, and slightly higher than that of the LAC-4 group. Pathological analysis of lung tissue using HE-staining revealed that the inflammatory pathological changes in mice from the YC128 group were significantly more severe than those in the YC156 group. Additionally, CT scan images displayed more pronounced inflammation in the lungs of mice from the YC128 group compared to the YC156 group. Local levels of cytokines/chemokines such as IL-1ß, IL-6, TNF-α, and CXCL1 were assessed via RT-qPCR in lung tissues. In comparison with the YC156 strain, the highly virulent YC128 strain induced the expression of proinflammatory cytokines more rapidly and severely. Furthermore, we examined the in vitro anti-phagocytosis ability of YC128 and YC156 strains against mice peritoneal macrophages, revealing that the highly virulent YC128 isolate displayed greater resistance to macrophage uptake in contrast to YC156. Results from Whole Genome Sequencing (WGS) indicated that YC128 harbored a complete type VI secretion system (T6SS) gene cluster, while YC156 lacked the majority of genes within the T6SS gene cluster. The other virulence-related genes exhibited minimal differences between YC128 and YC156. Drawing from previous studies, we postulated that the T6SS is linked to the hypervirulence and robust anti-phagocytic ability of YC128. CONCLUSIONS: This article reports on the isolation of a novel hypervirulent CAP-AB strain, YC128, from a severe CAP patient. The results demonstrate that this CAP-AB strain, YC128, is capable of inducing fatal pneumonia and extrapulmonary dissemination in a mouse pneumonia model. Moreover, this highly virulent CAP-AB strain exhibits significantly stronger anti-phagocytic abilities compared to the HAP-AB YC156 strain. Genome sequencing comparisons reveal that the heightened hypervirulence and enhanced anti-phagocytosis abilities observed in YC128 may be attributed to the presence of the T6SS.


Assuntos
Acinetobacter baumannii , Infecções Comunitárias Adquiridas , Pneumonia Bacteriana , Humanos , Masculino , Animais , Camundongos , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Pulmão/microbiologia , Inflamação , Infecções Comunitárias Adquiridas/microbiologia , Citocinas
2.
Microb Pathog ; 190: 106642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599551

RESUMO

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Klebsiella , Klebsiella oxytoca , Pulmão , Bexiga Urinária , Klebsiella oxytoca/fisiologia , Humanos , Células Epiteliais/microbiologia , Pulmão/microbiologia , Infecções por Klebsiella/microbiologia , Bexiga Urinária/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Técnicas de Cocultura , Coinfecção/microbiologia , Linhagem Celular , Interações Microbianas , Infecções Oportunistas/microbiologia , Infecções Respiratórias/microbiologia , Virulência
3.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603707

RESUMO

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Assuntos
Biofilmes , Candida albicans , Fibrose Cística , Proteínas Fúngicas , Fatores de Transcrição , Fibrose Cística/microbiologia , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação com Ganho de Função , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pulmão/microbiologia , Candidíase/microbiologia , Adaptação Fisiológica
4.
Microbiome ; 12(1): 56, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494479

RESUMO

BACKGROUND: Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS: To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION: This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.


Assuntos
Lesão Pulmonar Aguda , Microbiota , Animais , Camundongos , Líquido da Lavagem Broncoalveolar/microbiologia , Lipopolissacarídeos , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Bactérias/genética
5.
Medicine (Baltimore) ; 103(12): e37455, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518007

RESUMO

RATIONALE: Cryptococcosis presenting as endobronchial obstruction and lung collapse is an extremely rare occurrence. While these patients were treated with antifungal agents, unfortunately, half of them showed a suboptimal response. PATIENT CONCERNS: A 45-year-old immunocompetent male was admitted to the hospital due to a cough, yellow phlegm, and dyspnea persisting for 5 months. Chest computer tomography revealed a mass in the right main bronchus accompanied by right lower lobe atelectasis. DIAGNOSES: Endobronchial cryptococcosis presenting as endobronchial obstruction and lung collapse. INTERVENTIONS: Early rigid bronchoscopic therapy was performed to resect endobronchial obstruction, which combined with antifungal agent. OUTCOMES: The patient recovered well with completely clinical and radiologic resolution at 1 year follow-up. LESSONS: This case provides a good example of successful utilization of the early respiratory interventional therapy combined with antifungal agent in obstructive endobronchial cryptococcosis.


Assuntos
Obstrução das Vias Respiratórias , Broncopatias , Criptococose , Atelectasia Pulmonar , Humanos , Masculino , Pessoa de Meia-Idade , Antifúngicos/uso terapêutico , Criptococose/diagnóstico , Criptococose/tratamento farmacológico , Brônquios/diagnóstico por imagem , Brônquios/microbiologia , Pulmão/microbiologia , Broncopatias/tratamento farmacológico , Broncopatias/complicações , Obstrução das Vias Respiratórias/etiologia
6.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
7.
Microbiome ; 12(1): 63, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523273

RESUMO

BACKGROUND: Chronic infection and consequent airway inflammation are the leading causes of morbidity and early mortality for people living with cystic fibrosis (CF). However, lower airway infections across a range of chronic respiratory diseases, including in CF, do not follow classical 'one microbe, one disease' concepts of infection pathogenesis. Instead, they are comprised of diverse and temporally dynamic lung infection microbiota. Consequently, temporal dynamics need to be considered when attempting to associate lung microbiota with changes in disease status. Set within an island biogeography framework, we aimed to determine the ecological patterns and processes of temporal turnover within the lung microbiota of 30 paediatric and adult CF patients prospectively sampled over a 3-year period. Moreover, we aimed to ascertain the contributions of constituent chronic and intermittent colonizers on turnover within the wider microbiota. RESULTS: The lung microbiota within individual patients was partitioned into constituent chronic and intermittent colonizing groups using the Leeds criteria and visualised with persistence-abundance relationships. This revealed bacteria chronically infecting a patient were both persistent and common through time, whereas intermittently infecting taxa were infrequent and rare; respectively representing the resident and transient portions of the wider microbiota. It also indicated that the extent of chronic colonization was far greater than could be appreciated with microbiological culture alone. Using species-time relationships to measure temporal turnover and Vellend's rationalized ecological processes demonstrated turnover in the resident chronic infecting groups was conserved and underpinned principally by the deterministic process of homogenizing dispersal. Conversely, intermittent colonizing groups, representing newly arrived immigrants and transient species, drove turnover in the wider microbiota and were predominately underpinned by the stochastic process of drift. For adult patients, homogenizing dispersal and drift were found to be significantly associated with lung function. Where a greater frequency of homogenizing dispersal was observed with worsening lung function and conversely drift increased with better lung function. CONCLUSIONS: Our work provides a novel ecological framework for understanding the temporal dynamics of polymicrobial infection in CF that has translational potential to guide and improve therapeutic targeting of lung microbiota in CF and across a range of chronic airway diseases. Video Abstract.


Assuntos
Fibrose Cística , Microbiota , Pneumonia , Adulto , Humanos , Criança , Pulmão/microbiologia , Fibrose Cística/microbiologia , Bactérias/genética
8.
Microb Pathog ; 190: 106631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537761

RESUMO

The formation of long-lived T-cell memory is a critical goal of vaccines against intracellular pathogens like Mycobacterium tuberculosis (M. tuberculosis). In this study, to access the adjuvant effect of rapamycin on tuberculosis subunit vaccine, we treated mice with rapamycin during the course of vaccination and then monitored the vaccine-specific long-term memory T cell recall responses and protective ability against mycobacterial organisms. Compared with the mice that received vaccine alone, rapamycin treatment enhanced the vaccine induced long-term IFN-γ and IL-2 recall responses, promoted the development of TCM (central memory) like cells and improved the long-term proliferative ability of lymphocytes. Long-duration (total 53 days) of low-dose rapamycin (75 µg/kg/day) treatment generated stronger vaccine-specific memory T cell responses than short-duration treatment (total 25 days). Moreover, rapamycin improved the vaccine's long-term protective efficacy, which resulted in a better reduction of 0.89-log10 CFU of mycobacterial organisms in the lungs compared with control without rapamycin treatment. These findings suggest that rapamycin may be considered in designing TB subunit vaccine regimens or as potential adjuvant to enhance vaccine-induced T cell memory response and to prolong the longevity of vaccine's protective efficacy.


Assuntos
Interferon gama , Mycobacterium tuberculosis , Sirolimo , Vacinas contra a Tuberculose , Tuberculose , Vacinas de Subunidades , Animais , Sirolimo/farmacologia , Camundongos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/efeitos dos fármacos , Vacinas contra a Tuberculose/imunologia , Vacinas de Subunidades/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Interferon gama/metabolismo , Interleucina-2 , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Células T de Memória/imunologia , Células T de Memória/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/imunologia , Memória Imunológica , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Modelos Animais de Doenças , Vacinação
9.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
10.
Curr Protoc ; 4(3): e1001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456766

RESUMO

Cryptococcus is recognized as one of the emerging fungal pathogens that have major impact on diverse populations worldwide. Because of the high mortality rate and limited antifungal therapy options, there is an urgent need to understand the impact of dynamic processes between fungal pathogens and hosts that influence cryptococcal pathogenesis and disease outcomes. With known common limitations in human studies, experimental murine cryptococcosis models that can recapitulate human disease provide a valuable tool for studying fungal virulence and the host interaction, leading to development of better treatment strategies. Infection with Cryptococcus in mice via intranasal inhalation is mostly used because it is noninvasive and considered to be the most common mode of infection, strongly correlating with cryptococcal disease in humans. The protocols described in this article provide the procedures of establishing a murine model of Cryptococcus infection by intranasal inhalation and assessing the host immune response and disease progression during Cryptococcus infection. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Murine model of pulmonary cryptococcal infection via intranasal inhalation Basic Protocol 2: Assessment of the pulmonary immune response during Cryptococcus infection Support Protocol: Evaluation of pulmonary gene expression by real-time PCR Basic Protocol 3: Enumeration of survival rate and organ fungal burden.


Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Humanos , Animais , Camundongos , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Criptococose/microbiologia , Criptococose/patologia , Pulmão/microbiologia , Pulmão/patologia
11.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396998

RESUMO

Next-generation sequencing technologies have started a new era of respiratory tract research in recent years. Alterations in the respiratory microbiome between healthy and malignant conditions have been revealed. However, the composition of the microbiome varies among studies, even in similar medical conditions. Also, there is a lack of complete knowledge about lung-gut microbiome interactions in lung cancer patients. The aim of this study was to explore the lung-gut axis in non-small-cell lung cancer (NSCLC) patients and the associations between lung-gut axis microbiota and clinical parameters (CRP, NLR, LPS, CD8, and PD-L1). Lung tissue and fecal samples were used for bacterial 16S rRNA sequencing. The results revealed, for the first time, that the bacterial richness in lung tumor tissue gradually decreased with an increase in the level of PD-L1 expression (p < 0.05). An analysis of ß-diversity indicated a significant positive correlation between the genera Romboutsia and Alistipes in both the lung tumor biopsies and stool samples from NSCLC patients (p < 0.05). Survival analysis showed that NSCLC patients with higher bacterial richness in their stool samples had prolonged overall survival (HR: 2.06, 95% CI: 1.025-4.17, p = 0.0426).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Pulmão , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/análise , Carcinoma Pulmonar de Células não Pequenas/microbiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pulmão/microbiologia , Pulmão/patologia , Neoplasias Pulmonares/microbiologia , RNA Ribossômico 16S/genética
12.
Mycoses ; 67(3): e13711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414309

RESUMO

BACKGROUND: Post-tuberculosis lung abnormality (PTLA) is the most common risk factor for developing chronic pulmonary aspergillosis (CPA). However, the prevalence and incidence of CPA in PTLA patients in India remain unknown. OBJECTIVES: We aimed to ascertain the incidence and prevalence of CPA in subjects with PTLA. METHODS: We identified a cohort of pulmonary tuberculosis who completed anti-tuberculosis therapy (ATT) before November 2019 from the records of the 12 tuberculosis treatment centers attached to the national program. We recorded the clinical and demographic details. We performed computed tomography (CT) of the chest and estimated serum A. fumigatus-specific IgG. We categorised subjects as PTLA with or without CPA using a composite of clinical, radiological, and microbiological features. We resurveyed the subjects at 6 months (or earlier) for the presence of new symptoms. We calculated the prevalence and the incidence rate (per 100-person years) of CPA. RESULTS: We included 117 subjects with PTLA, with a median of 3 years after ATT completion. Eleven subjects had CPA in the initial survey, and one additional case developed CPA during the second survey. The prevalence of CPA in PTLA subjects was 10.3% (12/117). The total observation period was 286.7 person-years. The median (interquartile range) time to develop CPA after ATT completion was 12.5 (5-36.7) months. We found the CPA incidence rate (95% confidence interval) of 4.2 (1.8-6.5) per 100-person years. CONCLUSION: Chronic pulmonary aspergillosis complicates 10% of PTLA subjects after successful outcomes with ATT. Four new CPA cases may develop per 100-persons years of observation after ATT completion. We suggest screening patients with PTLA who develop new symptoms for CPA.


Assuntos
Pneumopatias , Aspergilose Pulmonar , Tuberculose Pulmonar , Humanos , Incidência , Prevalência , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/epidemiologia , Aspergilose Pulmonar/diagnóstico , Pneumopatias/complicações , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Inquéritos e Questionários , Doença Crônica
13.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380941

RESUMO

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Haemophilus , Humanos , Heme/metabolismo , Pulmão/microbiologia , Ferro
14.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347439

RESUMO

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Criança , Humanos , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Epiteliais
15.
Chest ; 165(2): e33-e37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38336441

RESUMO

CASE PRESENTATION: A 20-year-old patient with cystic fibrosis (CF) complicated by pansinusitis, pancreatic insufficiency, and diabetes presented to the local ED after an episode of large-volume hemoptysis at home. At baseline, she had advanced lung disease (FEV1, 0.97 L; 31% predicted) and upper lobe-predominant fibrocavitary changes. She was intermittently followed at a regional lung transplant center. She was previously evaluated for transplant but was not listed at the time of this presentation because of nontuberculous mycobacteria infection. She had never used tobacco, without reports of recreational inhaled drug use. Her mother had CF, and one of her brothers died in 2018 at age 24 of respiratory failure resulting from the disease.


Assuntos
Fibrose Cística , Transplante de Pulmão , Sinusite , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/microbiologia , Hemoptise/diagnóstico , Hemoptise/etiologia , Pulmão/microbiologia
16.
APMIS ; 132(5): 336-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379455

RESUMO

Recent evidence indicates that microbial biofilm aggregates inhabit the lungs of COPD patients and actively contribute towards chronic colonization and repeat infections. However, there are no contextually relevant complex biofilm models for COPD research. In this study, a meta-analysis of the lung microbiome in COPD was used to inform development of an optimized biofilm model composed of genera highly associated with COPD. Bioinformatic analysis showed that although diversity matrices of COPD microbiomes were similar to healthy controls, and internal compositions made it possible to accurately differentiate between these cohorts (AUC = 0.939). Genera that best defined these patients included Haemophilus, Moraxella and Streptococcus. Many studies fail to account for fungi; therefore, Candida albicans was included in the creation of an interkingdom biofilm model. These organisms formed a biofilm capable of tolerating high concentrations of antimicrobial therapies with no significant reductions in viability. However, combined therapies of antibiotics and an antifungal resulted in significant reductions in viable cells throughout the biofilm (p < 0.05). This biofilm model is representative of the COPD lung microbiome and results from in vitro antimicrobial challenge experiments indicate that targeting both bacteria and fungi in these interkingdom communities will be required for more positive clinical outcomes.


Assuntos
Anti-Infecciosos , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/microbiologia , Biofilmes , Bactérias
17.
Vet Microbiol ; 290: 110006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308931

RESUMO

Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Biofilmes , Actinobacillus pleuropneumoniae/metabolismo , Proteína Receptora de AMP Cíclico/genética , Pulmão/microbiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
18.
JCO Glob Oncol ; 10: e2300292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301183

RESUMO

PURPOSE: Febrile neutropenia (FN) is a serious complication in hematologic malignancies, and lung infiltrates (LIs) remain a significant concern. An accurate microbiological diagnosis is crucial but difficult to establish. To address this, we analyzed the utility of a standardized method for performing bronchoalveolar lavage (BAL) along with a two-step strategy for the analysis of BAL fluid. PATIENTS AND METHODS: This prospective observational study was conducted at a tertiary cancer center from November 2018 to June 2020. Patients age 15 years and older with confirmed leukemia or lymphomas undergoing chemotherapy, with presence of FN, and LIs observed on imaging were enrolled. RESULTS: Among the 122 enrolled patients, successful BAL was performed in 83.6% of cases. The study used a two-step analysis of BAL fluid, resulting in a diagnostic yield of 74.5%. Furthermore, antimicrobial therapy was modified in 63.9% of patients on the basis of BAL reports, and this population demonstrated a higher response rate (63% v 45%; P = .063). CONCLUSION: Our study demonstrates that a two-step BAL fluid analysis is safe and clinically beneficial to establish an accurate microbiological diagnosis. Given the crucial impact of diagnostic delays on mortality in hematologic malignancy patients with FN, early BAL studies should be performed to enable prompt and specific diagnosis, allowing for appropriate treatment modifications.


Assuntos
Neutropenia Febril , Neoplasias Hematológicas , Leucemia , Linfoma , Adolescente , Humanos , Líquido da Lavagem Broncoalveolar/microbiologia , Neutropenia Febril/diagnóstico , Neutropenia Febril/tratamento farmacológico , Neutropenia Febril/etiologia , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/patologia , Leucemia/complicações , Leucemia/patologia , Pulmão/microbiologia , Pulmão/patologia , Linfoma/complicações , Linfoma/diagnóstico , Linfoma/tratamento farmacológico , Estudos Prospectivos
19.
Antimicrob Agents Chemother ; 68(3): e0163123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319077

RESUMO

SF001 is a next-generation polyene antifungal drug in development, designed to have increased specificity to fungal ergosterol, which is absent in humans, and decreased binding to cholesterol. SF001 demonstrates long-acting, potent, broad-spectrum fungicidal activity. The goal of the current study was to determine the pharmacodynamic index and target of SF001 in an immunocompromised mouse model of invasive pulmonary aspergillosis against six Aspergillus fumigatus isolates. Minimum inhibitory concentration (MIC) values ranged from 0.5 to 2.0 mg/L. Plasma and epithelial lining fluid (ELF) pharmacokinetics were performed following single intraperitoneal doses of 1, 4, 16, and 64 mg/kg. Treatment efficacy was assessed with each of the six fungal isolates using daily doses of SF001 ranging from 0.25 to 64 mg/kg/day over a 96-h treatment duration. Efficacy was assessed by A. fumigatus quantitative PCR of conidial equivalents from lung homogenates. Nonlinear regression analysis using the Hill equation demonstrated that the 24-h exposure-response relationships for both plasma and ELF area under the concentration/MIC and Cmax/MIC ratios were strong and relatively similar [coefficient of determination (R2) = 0.74-0.75). Exposure-response relationships included a median plasma 24-h Cmax/MIC target for stasis and 1-log kill endpoint of 0.5 and 0.6, respectively. The present studies demonstrated in vitro and in vivo SF001 potency against A. fumigatus. These results have potential relevance for SF001 clinical dose selection and evaluation of susceptibility breakpoints.


Assuntos
Aspergilose Pulmonar Invasiva , Humanos , Animais , Camundongos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/microbiologia , Antifúngicos/uso terapêutico , Antifúngicos/farmacocinética , Aspergillus fumigatus , Pulmão/microbiologia , Testes de Sensibilidade Microbiana
20.
Nat Commun ; 15(1): 1547, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378698

RESUMO

Pseudomonas aeruginosa is a major nosocomial pathogen that causes severe disease including sepsis. Carbapenem-resistant P. aeruginosa is recognised by the World Health Organisation as a priority 1 pathogen, with urgent need for new therapeutics. As such, there is renewed interest in using bacteriophages as a therapeutic. However, the dynamics of treating pan-resistant P. aeruginosa with phage in vivo are poorly understood. Using a pan-resistant P. aeruginosa in vivo infection model, phage therapy displays strong therapeutic potential, clearing infection from the blood, kidneys, and spleen. Remaining bacteria in the lungs and liver displays phage resistance due to limiting phage adsorption. Yet, resistance to phage results in re-sensitisation to a wide range of antibiotics. In this work, we use phage steering in vivo, pre-exposing a pan resistant P. aeruginosa infection with a phage cocktail to re-sensitise bacteria to antibiotics, clearing the infection from all organs.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Pseudomonas , Humanos , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Pulmão/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Terapia por Fagos/métodos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...